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Abstract

Restriction of the N-dimensional Garnier system to a complex line yields a
system of second-order nonlinear differential equations, which may be regarded
as a higher order version of the sixth Painlevé equation. Near a regular
singularity of the system, we present a 2N-parameter family of solutions
expanded into convergent series. These solutions are constructed by iteration,
and their convergence is proved by using a kind of majorant series. For
simplicity, we describe the proof in the case N = 2.

PACS number: 02.30.Hq
Mathematics Subject Classification: 34M55, 34M35

1. Introduction

Let us consider a Fuchsian differential equation of the form
N+2 N

1d% Ci CN+3 A;
——= = + +
y dx? Z x—=1)?2 x(x-=1 Zx(x— D(x —1)

i=1 i=1

. N 3. B;
Z <4(x - 1) x(x—D(x— )‘j))

J=1

with the regular singularities x = #1, ..., ty, ty+1 := 0, fy42 1= 1, ty43 := 00 and the non-
logarithmic singularities x = Ay, ..., Ax. The isomonodromic deformation with respect to
the parameters 1, . . ., fy yields the N-dimensional Garnier system

T'(t) (& — Aj) 0h;  T'(0) (e — Aj) 04 _ (i —t)T ()
At) ot; Aty) oty (A —t)(A; — )N (X))

°h; 1 (T'0)  AON () (T A oAy
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1< TONN Q) O — 17)? )
*3l7 (5)

— TOON ROy — )2 — ) \ 01
I#]j
ﬁ: A=t 8k 0k 2A ()T (M)
A =t —2j) 3t oty T'(t)?(h; — 1) A (X))

=1
I#]

N+3 N+2

(cx + /)T (1) aT'(t;)
3/4) -2 ,
* ;(Ck +I ¥ ; At (A — 1) " At — 1)

ki
i.j = 1....N, with T(x) = [[["7(x — ), A(x) = [])_;(x — A;); which has fixed
singularities along the hyperplanes #; = ¢; (1 < i < N, 1 < j < N+3;1i # j)
([4, 5, 8, 13, 14]). The unknown vector function (Q1,..., Qn), Q; = tjA(tJ-)T’(tj)’l,
whose entries are essentially elementary symmetric functions of A, ..., Ay, satisfies another
system of equations corresponding to polynomial Hamiltonian structure ([13]). When N = 1,
as was derived by Fuchs ([2, 3]), this system coincides with the sixth Painlevé equation

py_ (1 1 1 2 (11 1.,
PVI: VM =-|-4——+— Q)" =+ + A
2\A A—1 A-—t t t—1 A—t

,\(,\—1)@—:)( (cr+ 1Dt (c3+1/4)(t — 1) cﬂ(t—l))
+——— " boo — + — ,
12(t — 1)2 A2 (h—1)2 O —1)2

boo = 22:1 cr+1 (A=A, t:=1, = d/det). Restriction of the Garnier system with N > 2
to the complex line (2, ..., txy) = (50,2, - - -, So.n) (S0; € C\ {0, 1}, s0,; # s0, (i # v)) yields
an N-dimensional system of second-order nonlinear equations, which may be regarded as a
higher order version of PVI. Putting

t=1, A=A, A A, - AN,
we write this system in the form

M= @n(t, Ay, Anj, M) N ), j=1...,N (1.1

(' =d/dt). Here (¢, A, p, X, [v) is arational function of (¢, A, uo, ..., un, X, Aoy evny AN)
obtained from the right-hand member of the second equation in the Garnier system (withi = 1)
after the substitution

(i, by, ty) > (Z,S(),Q, - 7SO,N)7
(Aj, Anj) = (A, @), (OX; /311, 9AN;/011) > (A, ).

Note that (¢, A, p, X fv) is independent of j. For example, ®,(¢, A, u, X 1) is written in
the form

Dy(t, A i“)—l l+ ! + ! + ! 1 (?
N L T A i S )

(1 1 1 1 1 )~
|-+ + - — A
t t—1 t—sg t—A t—pn
Mo—DO )@= o Aot
2u( — D —s0) (A — (e — 2) (m—0)(p—2)

20(A = DA — 1A — so) (0 — 1)?
12t — 1)2(t — 50)>(h — )
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apsot  ai(so— D@ — 1)
X | aoo —
( ur? o (p— D@ —1)?

axt (t — 1)(t —s0)  azso(so — 1)(so — t)) (12)
(=0 —=0% (k=350 —s50)
5
o :=§c,~+%, a0:=C3+‘1—1, ai Z=C4+Z,
. . 1
ay == cy, as .=C2+Z,
where 5o := so2. By the symmetry of the Garnier system, as far as local properties

of (1.1) near fixed singularities are concerned with, it is sufficient to examine near t = 0
([8, 11]). Near + = 0, PVI admits a general solution expressed by a convergent series; it
satisfies A() = e 11 + O(|t| + |e ™ 1| + |e“t'~?|)) as t — O through a certain domain
in the universal covering of C\{0}, where w € C\(fw e R|w < 0}U{w e R | w > 1})
and « € C are integration constants ([15-17], see also [10, 18]). Furthermore, connection
problems are studied through isomonodromic deformation ([1, 6, 7, 9]). For a Hamiltonian
system associated with the N-dimensional Garnier system, Kimura ez al ([12]) gave a reduction
theorem around its regular singularity, which may yield a convergent series expression of
solutions of (1.1) near t = 0, under certain conditions on ¢, cy+; and integration constants.

In this paper, applying the method developed in [17] directly to system (1.1), we present
a family of solutions near t = 0 expanded into a different kind of convergent series whose
coefficients are rational functions of integration constants; and they are valid for generic values
of integration constants without any condition on c¢;. For a technical reason, we treat (1.1) for
examining the behaviour of solutions near the regular singularity, from which a result on the
system of (Q1, ..., Oy) immediately follows. Our main result is stated as follows:

Theorem 1.1. Suppose that so; # 0,1 for 2 < i < N, and that so; # so, for v # i. Let
Q C C,Kc C"'and M c CN~! be arbitrary bounded domains satisfying

Q) CR:=C\(weR|o<0U{weR|w> 1))

and
N N N N+2
clM) C My := CN_I\ ( U Sif))) \ (U U Si(Ll)) ’
i=2.1=2 i=2 =i+l
where cl(-) denotes the closure of each domain, and Sl.(L') are hyperplanes in the (3, ..., ¢N)-
space defined by
&1 & = s0. Q<L)
S ia=¢ (+1<1<N),
[ @ .
Sine1 26 =0, Sine i G =1

Denote by R the universal covering of C\ {0}. Then, for a sufficiently small positive number
ro = ro(2, K, M), system (1.1) admits a 2N -parameter family of solutions

)"]Z)"](w9K0’K"1’HO;t) (jzlv"'7N)a

ki = (k12,0 kLN, Ko = (025 - -+ » HON)s
(a)vKOvalvl—L(]) cOQxCxKxM

whose series expansions
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CH 0
rMw, ko, K1, s 1) = et | 1+ Zozp(a), K1, po)t?
p=1

1 - 2 1—
+ Y (@, K gt (€700 + Y ol (@, Ky, ot (@01 ]
p=0 r=0
g1 g1

. - 0
(@, Ko, K1, phoi 1) = pros + e [k + Y B (@, K1, po)t”
p=>1

+ Z By (@, K1, o)t (€701)7 + Z Brg(@. K1, o)t (@1') | (2<I<N)

p=0 p=0
g=1 g1

converge absolutely and uniformly in the domain
Ao(Q, K, M, rg) := {(w, k0, K1, pg, 1) € A x Cx Kx M x Ry |

1/2 172
0

1] < ro, l6701°] < ry/7, |€0t1 7] < Ty },

0 1 2 20 pl g2 . S
where Oy U s By Brgs Bpg € C(w, po)lK1], namely, they are polynomials in ki whose

coefficients are rational functions of w and p.

Corollary 1.2. For each (w, ko, K1, ) € 20 X C x CN=!' x My, there exists a small positive
number ry = rj(w, K1, W) such that system (1.1) admits a solution (A1, X, . .., Ay) satisfying

A =er(1+ 0(Jt] + e 0| + et ™)),

M= oy +e 0t (k1 + Ot + [0t + €9t 7°])) 2 < I N)
as t — 0 through the domain
Ab(@, ko, 1) = {t € Ro | |t] < 1§, x (1) log|t] < Reko +1log((ry)'/?),

(1 — x () log|r| < —Rexo +log((rg)/*)},
where x(t) = Rew — Imw(log [z)~! arg?.

Remark 1.3. It is easy to see that, for a sufficiently small r3‘(<r(’)),
A (w,ry) =t € Ro | lt] <ry,0 < x(t) < 1} C Aj(w, ko, 1),

and that [t = [¢[*©, |t'7°| = |¢|'""*® in A*(w, r§). If 0 < Rew < 1, then, for every large
positive number Ry, there exists a small positive number #)(Rp) such that {r € Ry | |¢| <
Fo(Ro), largt| < Ro} C A*(w,r}) C Ay(w, ko, ry). If Rew < 0 (respectively, Rew > 1),
and if Imw # 0, then A*(w, r{}) is a spiral domain.

Remark 1.4. By the symmetry of (1.1) withrespectto; (1 < j < N),foreachl,2 <I <N
as well, there exists a solution ()»il), e, )»gf,)) such that

M) = e (1+ O([t] + e ™01 + [er'~2))),
A= o e (kg + O] +[e 701 + |01 D) (j #1D)

as t — 0 through Aj(w, ko, 1}).
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Our main result is proved in section 3 by the use of preparatory lemmas given in section 2.
For the simplicity of description, we show it in the case where N = 2; and the general case is
treated by the same argument. The formal series of solutions are constructed by iteration, and
their convergence is proved by using a kind of majorant series.

2. Preliminaries

In what follows we consider the case where N = 2. Let 2, K (:= K), M (:= M) be the domains
in C satisfying the suppositions of theorem 1.1, and suppose that (w, 1, (o) € 2 x K x M.
We use the notation below.

(1) R denotes the set of formal series expressed as

0 1 - 2 -
¢ = E ¥, (@, k1, po)t? + E Vg (@, k1, po)t? (e701*) + E Ypq (@, k1, po)t? (€01 )%,
pzl1 pz20 p=0
g1 g1

2.1
where y0, v, vp, € Clo, j10)[K1].
(2) For ¢ € R expressed as (2.1), we define ||¢|| = [[¢ ()] = l|¢lI(J¢]) by

ol =" [yl @. k1 n)|1t17 + Y ([¥pg(@. k1. 10| + |y, (@. k1. po)|) 1117972,

p=1 p=0
g1

which is a function of (w, k1, (o, |[t]) € R x K x M x {t|t > 0}, not necessarily finite valued.
(3) We set

R, K, M, r):={p € R |sup{loll(r) | (@, k1, no) € 2 x K x M} < oo}
(4) For ¢ € $R expressed as (2.1), we define the operators Zy : R — Rand Z, : R — R

by
0
v, (@, k1, (o)
Tolp) =y F——t’
p=1 p
n Z ypq(w K1, MO)[[)( 7K0[w)q + Z qu K1, /’L()) p(e‘(ﬂz‘l*w)q’
0 p+wq s p+ (1
g>1 q>l
and
0
Y ((1), K1, /'L())
Tlpl =) L——— " 1P
p=1 pro

2
+ Z ]/pq(a) K1, H-O) p( *Kntw)q + Z ypq(ﬂ) K1, H—O) l‘p(ekotliw)q.
o Predtoe p+(l—-wqg+ow
qgl q>l

Proposition 2.1. (a) R is a ring.

(b) Suppose that ¢ € R(Q2,K,M,r). Then, ¢ is a holomorphic function in the
domain Ao(2, K, M, r) (cf theorem 1.1), and satisfies ||¢| = O(|t|"/?) uniformly for
(w, k1, o) € 2 x K x M. Moreover, the series ¢ can be differentiated term by term with
respect to each variable.

Proof. The assertion (a) follows from the fact that, for every pair (po, go) € (N U {0})?,
the number of triples (ly, [1,1,) satisfying t/o(e™0t®)1 (et =®) = tPo(e ™ 0t®)%0 or =
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P (e¥0¢1=®)% ig finite. Observe that, for any r’ < r, the series ¢ € R(Q2, K, M, r) converges
uniformly and absolutely in the domain Ay (2, K, M, r’); which implies the assertion (b).
O

The following inequalities are easily checked.

Proposition 2.2. Suppose that ¢, € R(Q, K, M, r).
(a)If ol =0 for |t] <r, (w, k1, o) € L X K X M, then ¢ = 0.
(b) If yo € Clw, no)lk1l, then llyodll = Iyolll@ll for It] < r, (@, k1, o) € 2 x K x M.
(c)l¢+ Yl < NPl + 1|l for |t < r, (w, k1, po) € 2 x K x M.
(d) llpwll < @l Il for |t] < 1, (@, k1, o) € 2 x K x M.

Suppose that the power series

fOu =D ay -y, e Clo, polal,
k=1
kK= (ki,..., kp), K| =k +---+ky
converges for |y;| < p; (1 < j < h). Then, by the same argument as in the proof of
[17, proposition 3.3], we have

Proposition 2.3. (a) If ¢; e R (1 < j < h), then f(¢1, ..., ¢n) € R
D) IfN6;1l < p; (1< j < h)forlt] < r, (@,k1, ko) € 2 x K x M, then

@il < D Tellignll - il

[kI>1

Clearly, if ¢ € R, then Zp[¢] € R and Z,,[¢] € R. The following fact indicates that Z,
and Z,, correspond to certain kinds of formal integral operators.
Proposition 2.4. If Zy[¢] € R(R, K, M, r) (respectively, T,[¢] € R(2, K, M, r)), then
d d
—Tolpl =t"t¢ |(respectively, —(tL,[¢]) =1°"'¢
dr dr
for (w, ko, k1, o, 1) € QX C x K x M X Ro, |t| <r, e t®] < rl/?, |eot!=2| < r1/2,

Since cl(£2) C g, there exists a small positive number go(< 1/2) such that
QC{w|ey<Rew<1—¢gy}U{w||Imw| > g|Rew — 1/2[}. 2.2)

Proposition 2.5. If ¢ € R(R2, K, M, r), then

¢ Il
I1Zo[p1ll < & /0 tHpl(r)dr  and ||Z,lp1ll < g'ltl”" 2 f gl (r) de

0
for (w, k1, o) € LXK X M, |t] <r.

To prove this proposition, we note the following:

Lemma 2.6. For every (p, q) € (NU{0}) x N and for every w € 2,
2 2
p+aql <o, p+q/ <l
|p +wq] lp+ (1 —w)ql
Proof. By (2.2), if w € , then either gy < Rew < 1 — gy or gg]Re w — 1/2| < |Im w| holds.
If &g < Rew < 1 — &g, then, for every (p, q) € (NU {0}) x N,
{p+q/2 p+q/2 } p+q/2 _ 1
ax , < < —.
lp+awql |p+(1—w)ql| p+eoq 2
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If ¢g|Rew — 1/2| < |Imw]|, then, for every a € R\{0}, we have gy|Re(a(w — 1/2))| <
[Im(a(w — 1/2))], and, hence

-1
-1

p+q/2 ‘1 w—1/2 3gg o
— =l — _— <&,
|p +wql pla+1/2 2./1+¢2
—1
p+q/2 _‘1+ 12— | 3e0 e
Ip+(1—w)q| plg+1/2 2 /1462 °
for every (p, g) € (NU {0}) x N. This completes the proof of the lemma. (|
Proof of proposition 2.5. By lemma 2.6,
2P I]
<ag‘|t|‘“2/ vl de (p=1),
lp+ ol 0
|t|ﬂ+q/2 Il
———— < eallzl“/zf T 2P de (p=0,g>1),
|p+wgq + o 0
|t|p+q/2

It
—1y,—1/2 —1/2_p+q/2
&y |t T T dr >0,g>1
|p+(1—a))q+a)|\0|| /0 (p=20,g21)

for w € Q. Then, for ¢ € R(Q2, K, M, r) expressed as (2.1), we have

Il
IZu1g11 < 80“|t|’”2/0 (Y e D (gl + 2 Do) de

p=l1 p20
g=1

[7]
=aa‘|t|*“2/ T 2)¢l(r) de
0

for (w, k1, o) € © x K x M, |t| < r, which is the second inequality. The first inequality is
verified by the same argument ([17, proposition 3.5]). ]

3. Proof of theorem 1.1

3.1. Transformation and a system of equations

Suppose that N = 2. Setting A := Ay, i := Xy, we write (1.1) in the form

A= Dot h M 1), n' =@t pu, dy p )

with @, (¢, A, u, A, fi) given by (1.2). The suppositions in theorem 1.1 are written as
(w, ko, k1, 10) € X Cx K x M, cl(R2) C R,
cl(M) C My =C\ {0, 1, so}, so € C\ {0, 1}.

Byl =e ™, u = o +z, system (1.1) is changed into
t(tw') = Fale ™™, te”, 2)(tw)? + Fi1 (1,7, 2) (tw') (1Z)

+Fp(t,e ™, te”, 2)e” (1) + Fio(t, te¥, 2)(tw') + Foolt, e ¥, te?, 2),
t(tz) + (tw)(t7) = Goa(t,e ™™, 2)(t7)* + Gri(e ™™, te”, 2) (tw)(t7)

+Golt, e, te”, 2)e 2 (tw')? + Go (¢, t ¥, 2)(tZ))

+Goo(t,e™ ", te”, 2)e” ",
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where
_ 1 n & £ £
FZO(S’”’Z)"2<1—n+§—1+s—so g—uo—z)’
E—1t
F ’ ’ = 9
ne£2) (mo+z—1t)(no+z—5)
Foo(t,6.1m.2) = (= DE —so)(mo+z—1)

T 2mo+ D) (o — 1+ (o —so+2)(o+z — 61 —n)’
FlO(tvn’Z):_< ! ! 1 ! )9

+ — —
t—1 t—s9 n—1 t—up—2z

Foolt £ ) = — 2= DU —mE 5otz =0 (. aoson
OIS I =TT T — 500 — o — 2) T hotz
L @G —DE—DE - at—DE—son a3s0<s0—1)(s0—t)s>
(mo+z—DE-17 (mo+z—0DA =07 (o—so+2)E—50)?)
G(t)_l<1+1+1+1_1>
02 aE’Z—z no+z po—1l+z po—t+z po—so+z po—£&+z)°
Gll(ésntz)z E !

E—po—z l1—7
(o +2) (o — 1+ 2)(uo — so +2)(1 — 1)
G k] ’ ’ = ’
081D = 2T E 50— 1+ DE — o — 2)
t t n t
GOl(t’ n’Z) = _< >7

+ J— —
t—1 t—s9 n—1 t—pup—2z

2(po +2)(po — 1+ 2) (o — 1 +2) (o — 50 +2)(1 — 1)?
(t = 1)2(t — s0)*(no — & +2)

< apSot ai(so— D — 1)&

X | accé — +
(mo+2)?  (mo—1+2)*E—1)
axt(t — 1)(t — s0) N azso(so — 1)(so — 1§ )

(o —1+22(1—=1n) (o —so+2)%(E —50) )
Let us make the further change of variables w = —wlogt + ko + u, z = €70t (k; + v). Then,
we note the following relations:

Goo(t,&,n,2) =

e W = e 0P eH, reV =eorlTeet, tw =t — o, ttw) =t@tu'),

t7 = et (w(ky +v) + 1), t(t7) = e (w (k1 + V) + 2010 + 1 (1V'))).

Using them, and observing that e* (tz)? = e 1? e (w (k] + v) + 1v')%, we obtain the system

of equations

ttu') = Wit e 1, et ) + Hy(t, e 1”&t u, v, tu', 1),

t(tV) +wtv’ = —(wv + tV)tu' — wiytu’ + Wy(r, e <0, 0 17?) 3.1)
+ Hy(t, e 701?01~ y v, i, 1v)).

Here

Wi (t,€,n) = 0 Fx (&, 1, 18) — 0° k1 EF) (1, €, k18) + 0k [EFa (1, €, 1, k1 €)
—wFo(t,n, k1§) + Foo(t, &, 1, k18),

Ws(t, &, 1) = 0’ kIEG(t, £, k1E) — 0’ k1G11(E, 0, K18) + 0*EGag(t, &, 1, K1§)
+wi1Goi(t, 0, k18) + Goo(t, &, 1, k1§),
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which satisfy W, (0,0,0) = 0 (h = 1,2); and H,(t,&,n,u, v, i, d) (h = 1,2) are rational
functions of ¢, &, n, et v, i, U with the properties

H,(0,0,0,u,v, i, ) =0, Hy(t,&,1n,0,0,0,0) =0.
By the condition uy € C\{0, 1, 5o}, so # 0, 1, these functions are expanded into power series
around the origin, whose coefficients belong to C(ug)[w, x1]. The transformation and its
resultant system are summarized as follows:

Proposition 3.1. For any (w, ko, k1, ko) € 2 x C x K x M, by the transformation
A=e ?e™, w=o+e “t?k +v), (3.2)
system (1.1) is changed into (3.1), whose right-hand members have the following properties:
(a) W (t, &, 1) (h = 1,2) are holomorphic for |t| < i, |&| < r;’, In| < r|’*
expanded into the convergent power series
it Em= Yy bYW, (k1 po)t™E 0P
potpi+pa1
with bg(‘])’p]’m(w, k1, o) € C(uo)lw, k11, where ri = (2, K, M) is a sufficiently small
positive number,
(b) Hy(t, &, n,u,v,i,0) (h = 1,2) are holomorphic for |t| < ry, €] < rll/z, In] <

, and are

rll/z, lul < po, [v| < po, |ii| < 00, |0 < 00, and are expanded into the convergent power
series

~ o~ hlb,1s Iy, ~13 ~l.
Hy(t, €, n,u, v, i, D) = § § C;Oq;’lq?[’; 4)(w’K1’MO)[P0§P1an wh ol
L+l +la 21\ po+pi+pr21
0< I3+, <2

with c},’(‘)ll;,;{zl;?’l“)(a), k1, o) € Cluo)lw, k1], where py = po(2, K, M) is a sufficiently small
positive number.

In what follows r; and pg denote the positive constants given above. By propositions
2.1(b), 2.3 and 3.1, we immediately have the following:

Proposition 3.2. Let r’ be an arbitrary fixed positive number such that v’ < ry /2. Suppose that

B wm,ﬁm, Um € R(Q, K, M, 1) (m = 1,2) satisfy | gmll < po/2, 1¥mll < po/2, |$mll <
00/2, 1¥mll < po/2 for|t] <t/ (w, k1, o) € L x K x M. Then,

Hy(t, €71, 1™ du, Y, Gy Uin) € R(Q, K, M, 1) (h=1,2),
and
Il H (2, €708, €011, o, Yo, §a, ¥ra) — Hiu(r, 71, 1", ¢y, i, 1, Yl

< Lolt"* (g2 — ¢l + 1v2 — Yl + 1§ — Gull + 12 — VD).
uniformly for |t| < r', (w, ko, k1, o) € QL x C x K x M, where Ly is some positive constant
independent of r'.

Set g(v, it, D) := (wv + D)ii + wiyii. Since [t]~2 ||, 1| (|2]) is monotonically increasing
with respect to |¢], it follows that, under the conditions of proposition 3.2, |, [I(|f]) <
(p0/2)(r")~V/2|¢|'/? uniformly for |t| < 1/, (w, k1, o) € 2 x K x M. Using this fact, we have
Proposition 3.3. Under the same suppositions as above, there exists a positive constant L
independent of r' such that
g2, 2, ¥2) — g1, b1, Y1)

< Lillg2 = @il + 2 2w — vl + 192 = 1)
uniformly for |t| < r', (w, k1, ko) € L x K x M.



12162 S Shimomura

Proposition 3.4. For an arbitrary fixed positive number satisfying r' < ry/2, we have
W (1, 67012, &1 =) | < Lot]'?

uniformly for |t| < r', (w, ko, k1, o) € L x C x K x M, where L, is some positive constant
independent of r'.

3.2. Construction of an iterative sequence

Note that (3.1) is written in the form

i@ =1y, e, 0t ) T H (1, @708, 4001w v, i, D),

W =t"'a,

(t“0) = =1t g(v, @i, 0) + 127 Wy (£, e 701?01 ) (3.3)
+197VHy (7, €701, €010y v, 1, D),

v =1719.

In view of this together with proposition 2.4, we consider the corresponding system of formal
integral equations for u, v, ii, ¥ € fR:

i = To[W(r, e 0t 0t =) + To[Hy (1, e 01, 01w, v, i, §)],

u = Tolil,

U= —T,[gv, &, D))+ L,[Wa(r, e 1, 1! ~)] 34
+ T, [Hy(t, et et ™ u, v, i, D),

v = Ty[D].

To construct a solution of (3.4), we define the sequence u, (t), v, (¢), i, (), D,(¢) € R by

uo(t) = vo(t) = iig(t) = Bo(t) =0,
ity (1) = To[W(t, e 01?0t~y

+To[Hi (1, €1, 1"~ 1y (1), vy_1 (1), fly1 (1), Dy1 (D)),
uy (1) = To[it, (1)], (3.5)
Uy (1) = —Zo[g Wyt (1), iy (1), Dyey ()] + T [Wa(t, €701, 01" 7))

+ T [Hy (1, €01, 1™ 1, (1), vy_1 (1), 1y (1), By_1 (1)1,
v (1) = Zo[0,(1)]
for v > 1, and put

Uu(t) = uy (1) = o1 1), Vo) = vu(t) = v 1), 3.6)
Uy(t) = i, (1) — iiy—1 (2), Vo) = 0,(1) — By_1 (1),

Then we have

Proposition 3.5. There exists a positive number ro = ro(2, K, M) such that the estimates

max{ i, O] o O 1@, Ol 13,01} < po/3 (v = 0), 3.7)
max{[ U, O IV, Ol 1T, V@) < Gl =1, (3.8)
D Coltl? < po/4 (3.9)

vl
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are valid for |t]| < ro, (w, k1, o) € L X K X M, where
Cy = (96e5*L.) rg P17, L= (Lo+Li+1)(Lo+Ly+1).

Proof. Take a number ry < r/2 so small that

> Cory* < Ciry? > (96554 L) " ()™ < Cryexp (96651 L.) < po/4.

v>1 v>1

Then (3.9) is valid for |¢| < ry. We would like to verify (3.7) and (3.8) by induction on v. By
propositions 2.5 and 3.4, we have, for || < rg, (w, k1, o) € L X K X M,

I
10101 = llai (@) = I1To[ W1 (7, 61, e =)]|| < Ealf WD) de
0

[t]
< sa'”/ r12dr < 265 Lot < Gyt < po/3,
0

so that it;(t) € R(2, K, M, rp); and

I
1U1DN = llur )l = 1 Zoli1 (D] < 80_1/0 v || (v) de

<dey?Lolt|"* < Ci1t]M? < po/3, uy(t) € R(Q, K, M, rp).
Using propositions 3.2-3.4 and the estimates for ||z (¢)]|, ||i;(¢)|| above, we have
Vi@l = 1911 < 1Zu[g(0, iy (1), O] + | Zo[Wa(r, €01, 01! )]
+ | Z[Ha(t, 61, '™ uy (1), 0, 11 (1), 0)]|

[t
gt / (Lyt "2\l 1 (r) + Lo+ Lo(luy | (v) + [l 1 (1)) dt
0
< 265 L1 LotV + &5 ' La|t]"* + 665 Lo Ly 1|
<68y (Lo+ Ly + D)Lt < C1l1]"? < po/3,
01(t) € R(QL, K, M, rp), and hence
Vi)l = lloi Il = 1 Zolor (O < 1265 (Lo + L1 + D Lao|t]'* < Cyt]"* < po/3,

vi(t) € R(NL, K, M, ry). This implies that (3.7) and (3.8) are valid for v = 1. Suppose
that (3.7) and (3.8) are valid for v < n — 1. By propositions 2.5 and 3.2, we have, forn > 1
and for |f| < ro,

~ |t| ~ ~
10,0 < & / Lot (10,1110 + 1 Vst 1(@) + 1Un= 1 1(2) + Vet lI(7)) d
0

Il
< 480_]L0f Co1 7" 22 dr = 8ey ' Lon ™' Cy[1]"? < Cplt™2.
0
Combining this with (3.8) and (3.9), we have

lin 1 < D NTu@I <Y Coltl"? < po/3
v=1

v=1
for |¢| < ro. By the estimate for || U, (¢)| above,

| _
U] <851/ U, (x) dr
0

7]
< 851/ 8ey ' Lon™'Coy T2 dt = 1665 > Lon 2Cy_1[t1"* < Colt|"?,
0
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which implies ||u, (¢)|| < po/3 for |t| < ry. Furthermore, by proposition 3.3,

~ |t| ~ _ ~
NAGIES 851L1|t|—‘/2/ (210,01 + 7y UV 1) + 1V [1(2))) dT
0

- _
+ey Lolt|™? / (Vi 1@ + Vet 1) + 1T,11(2) + U, NI (7)) dT
0

<y (Lo+ Loy e~

I#] _ _
X /0 (T 2UT @) + U @) + 1Vt (@) + 1 Vasi (D) de

t]
<eg(Lo+ Ll)ro_l/2|t|_'/2/ (24652 Lon "' Cpey +2C,—1) T2 de
0
<485y (Lo + L) (Lo + Dy 0™ Cucy 1% < Cylt "2,

I
V@)l <80_1/ V() de
0

£
<851/ 48653 (Lo + L) (Lo + Vg 0 C, /> de
0

< 96854 (Lo + L) (Lo + D)y Pn2Co |t < Cult]"?,

and we have ||7,,(t)]| < po/3, lva(®)]| < po/3 for |t| < ry. These inequalities imply that (3.7)
and (3.8) are valid for v = n. Thus, we obtain the proposition. ]

3.3. Completion of the proof of theorem 1.1

By proposition 3.5, in the series expansions of U, (¢), V, (1), U,(t), V,(t) € R(Q, K, M, ry),
the coefficients of 7”7 (respectively, 7 (e™0¢t“)?, tP (e¥0¢1=*)?) vanish for p such that p < v/2
(respectively, for (p, g) such that p + q/2 < v/2). Consequently, we obtain the series

u(t) =Y Uy, v =Y Vo), a0 =) U,0), b)) =Y V(1)
v>1 v>1 v>1 >3

belonging to R. By (3.7), (3.8) and (3.9), the estimates

max{[[u(@)|, @Il @@, 9@} < po/3,
max{|[u(t) — up—1 (D, lv(E) — va1 (O, (3.10)
I(0) = ita1 I, 15¢) = Bur DI} = OU£]"?)
are valid uniformly for |¢| < rg, (w, k1, o) € €2 x K x M. Using (3.10) combined with
propositions 2.5, 3.2 and 3.3, we derive
IZol H (2, ™01, €01 u(r), v(2), &), B(1))]
— Dol Hy (8, €701, 1"ty 1 (1), vp1 (1), g1 (1), Bur )] = O(12]"?),
| Z,[Ha (2, e70r?, &t~ u(r), v(r), (1), 5(1))]
— T [Ha (1,701, 1" 1, (), Va1 (1), i (1), By OD]I = O(I2]"),
IZuLg (v (@), (1), 5())] — Zu[g (Va1 (1), iln (1), Tuor I = O(I2]"?).
Therefore, the quadruplet (u(z), v(t), @i (t), i(t)) € R(Q, K, M, ry)* satisfies system
(3.4) for (w, ko, k1, o, 1) € Ao(R2, K, M, ry). By proposition 2.4, this is also a solution of

(3.3). Substitution of this into (3.2) yields the desired solution of (1.1). This completes the
proof of theorem 1.1.
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